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CHAPTER ONE

((Mathematical Principles))
( Theorem

_p’

If the square of one side of a triangle is equal to the sum of the squares of the other sides then the triangle is a right triangle.
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Theorem: If the square of the longest side of a triangle is greater than the sum of the squares of the other two sides
then the triangle is an obtusetriangle.
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Theorem: If the square of the longest side of a triangle is less than the sum of the squares of the other two sides
then the triangle is an acutetriangle.
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The Pythagorean Theorem: In a right triangle, the square of the hypotenuse is equal to the sum of the squares of

2_ .2 2
the legs. c”=a"+b
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.‘ Definition of an inductive set
A set of real numbers is called an inductive set if it has the following two properties:

a) The number 1 is in the set.  b) For every X in the set, the number X +1 is also in the set
For example, R is an inductive set, So N is an inductive set.
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‘ The Language of Mathematics

s

There are several words on our everyday language which are also used on mathematics. Words like true, false, not,
and, or, implies, if and only if, all, some, none, etc, are all everyday words that are essential to the
mathematician's formal language. Most of us feel that we know the meanings of these words. In order to be sure
that we all attach the same meaning to these words we will attempt to define some of them precisely. You will find
that the clarification of some of the above-mentioned words will make your study of mathematics more precise, and
we hope clearer and more enjoyable. For example, we hope to simplify later discussions concerning inequalities by
the use of the notions developed in this chapter.

The basic building blocks of mathematical statements are sentences which are either true or false. We call such
sentences prpositions.
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Most theorems in mathematics involve something more than simple propositions and connectives of the type we

have been discussing. For example, probably you have frequently seen a statement similar to the following:
a+b=b+a

Where a and b are natural numbers (that is, 1, 2, 3, ...). We do not mean to say that a+b=Db+a for a particular of

numbers a and b, but that a + b =b + a for any pair of natural numbers at all. We usually indicate this by saying that

for all natural numbers a and b, a+b=b+a

The word all or for all is called the universal quantifier. Frequently the reader of mathematics is expected to

provide the universal quantifier himself. The authors will just assume that the reader will do this.
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You were to interpret PAQ=qADp
to mean that pAq=qApfor all propositions. In fact the choice of the letters was arbitrary. If r and s are
propositions, then we know from the above thatr As=s At . Furthermore
X<HAE>I)=x>3)A(x<)I).
In general, p A q =q A p for any propositions p and q.
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X<HAE>I)=x>3)A(x<I).
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The other quantifier frequently used in mathematics is the existential quantifier, "there exists". For example, if
we are talking about natural numbers again there exists a natural number less than 4 that divides 12 evenly. That is,
there is at least one natural number less than 4 that divides 12 evenly — there may be more. To say there exists is to

assert that there is at least one. Symbols which we will use occasionally for the universal quantifier and the
existential quantifier are V and 3 respectively. For example,

VX x2>0 meanforallx,x2 >0

and 3Jx x2 = 0 means there existsan x such that x2 = 0.
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! Circles

1- Did you ever skip a stone over the surface of the water and watch the circles appear?
Circles occur frequently in nature. Name some of the natural things you have seen that contain circles.
On the next page you will learn how to divide a circle into six equal parts, and later you will learn how to divide a
circle into twelve equal parts.
2- In the circle at the right, the center is at O.
3- There are three radius in this circle. Name them.
4- Which is a diameter, AB or OC? A
5-If OC is 2", how long is AB? c
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6- Place a point on a piece of paper and call it O. Whit O as center and a radius of 1 inch draw a circle. With the

same center and a radius of 2 inches, draw another circle. These two circles are concentric circles; they have the
same center.

7- Any part of the curved of a circle, such as AC, CB, or ACB, in the circle at the right, is an arc. The length of the

circle is its circumference. If AB is a diameter, which of the following arcs is a semicircle (half a circle)? CAD
ACB¢« DBC.
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( Trigonometric Functions
_ —

From the definitions of the trigonometric functions one easily deduce the following formulas:

1 . 1 . 1 n
1) cott=——(iftant#0), 2) sect=——(ifcost=0), 3) csct=——(ifsint=0),
tant cost sint
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( Vocabulary

m

Absolute value Gl jud

& Example: The absolute value of -3 is denoted by |-3| and is equal to 3.
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Addition o=
Algebraic equation S Aolro
Angle w9l

T\ Example: Every square or rectangle has four square corners, or right angles, which look like this_] "1™ L
g 1 TTTT L e B agls b mpe 4255 oz sl Jebata b g0 2
Antisymmetric Oyl

T Example: There are relations which are both symmetric and antisymmetric (equality and the empty relation),

there are relations which are neither symmetric nor antisymmetric, there are relations which are symmetric and not
antisymmetric (congruence modulo n), and there are relations which are not symmetric but are antisymmetric
("islessthan or equal to").
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Area o bwo

™ Example: Areaof triangle = %x basex height

\
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aql; Angle

sucls Base
Associative oper ation RNES 2o Jos

T Example: Union is an associative operation because A U (BUC)=(AUB)UC.

AUBUC)=(AUB)UC 15 el piocS o doe gloss!
AXis 950
Axis of symmetry Oy Hgme

& Example: An equilateral triangle has three axis of symmetry.
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Base Lo sy 003
= Example: The side on which atriangle standsisits base. el o goaeBB an] o ] (g9, Edie a5 2l
Cancdllation 55 o o35 o0l

& Example: Cancellation means dividing the numerator and the denominator by the same number.

12 19 1x1 1
—_— X —= = — . . LWSJ Soe ‘ . . . . s OQLH,
2\4 1,3 2x1 2 oS ol (SLaSS Ry S g 9 Oy90 S 50,5




ol e YL 31 (sl 35 9 4 ity o sk 13 @

Cancellation law RN |

TR Example: Cancellation law for addition: if a+b=a+c then b=c
b=c Kla+b=a+c 51: gz (lp B3> 58
T Example: Cancellation law for multiplication: if ab=ac and a#0 then b=c.
b=c KTaze jdh=aC 3l:0,o olp Sis> sl
Circumference oy ls o
™ Example: Thelength of distance around acircle oS S 98 dlee Job
Coefficient o o
Commutative oper ation lrlr Joe b pdy 98 Jos

T Example: Since is no question of order involved in the definition of union and intersection, it follows that
AUB=BUA and ANB=BNA, that isto say union and intersection are commutative operations.
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Complements foso
Composite function S po &b

T Example: For a composition of functions (gof) to be possible, the range of the first function (f) must be a
subset of the domain of the second function (g)
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Concave o — o5

& Example: He function y:\& is concave.

y=x
>» X
Consist of 51 oo St
Contradiction s

T Example: Proof by contradiction is a particular kind of the more general form of argument known as

reductio ad absurdum.
el Gl e pb s ol 5 IS IS ) ol el @l Sl el b oLl

Convex oo — g5
W™ Example: The function y = x? i's convex.
y > ol Gime Y =X b
y=x : :
> X
Corner oS

Denominator gy JC



@ 74 Aol 3! (il 15 S 4y g gl yo CHAPTER THREE: Differential Equations

952 ¢yl

P

CHAPTER THREE
(( Differential Equations))
‘ Integral curvesand direction fields
.
Consider adifferential equation of first order, say y' =f (X,y) and suppose some of the solutions satisfy an implicit

relation of the form
F(x,y,C)=0
where C denotes a constant.

If we introduce a rectangular coordinate system and plot al the points (X, y) whose coordinates satisfy for a
particular C, we abtain a curve called an integral curve of the differential equation.
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Different values of C usually give different integral curves, but all of them share a common geometric property.
The differential equationy’ =f(x,y) relates the lopey’ at point(x,y) of the curve to the coordinates x and y. AsC
takes on al its values, the collection of integral curves obtained is called a one — parameter family of curves.
adolee 053,55 5 S i mwiid Sl LT aen Ll caims o Cows a1 Sglitte J1,Kul sla oo Yoone C Cilisee polie
s 08 LS|y (o polie aen C 8y S o bgye Y g X Slaiss ¢ gzt 51 (X, Y) abais o 0 1) Y ot Y =T (X, Y) Jomslios
Al a2lss oael b e 5l (6 el )L SG geolgils S ol LT slo i
For example, when the differential equation isy’ =3, integration givesus y = 3x + C, and the integral curves form
afamily of straight lines, al having slope 3. The arbitrary constant C represents the y-inter cept of these lines.
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If the differential equation isy’=x, integration yieldsy=%x2+c, and the integral curves form a family of

parabolas as shown in Figure (1) Again, the constant C tells us where the various curves cross the y-axis. Figure

illustrates the family of exponential curves,y = Ce*, which are integral curves of the differential equationy’' =y .

Once more, C represents the y-intercept. In this case, C is equal to the slope the curve at the point where it crosses
the y-axis.
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1- Integral curvesof the differential equation y'=x 2- Integral curvesof thedifferential equation y'=y
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( Homogeneous fir st-order equations
We consider now a specia kind of first —order equation,
y'=f(x,y) )
in which the right—hand side has a specia property known as homogeneity. This means that
f(tx,ty) =f(x,y) 2
foral x,y,andall t=0.
Jo! 4 30 (Fad SY0las
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y'=f(x,y), ()
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f(tx,ty) =f(x,y). 9]

In other words, replacement of x by tx and y by ty has no effect on the value of f (x,y) . Equations of the form
(1) which have this property are called homogeneous (sometimes called homogeneous of degree zero).
Examples are the following:
2 .2
' =X ' X"+ , X . X7+ ,
- Y , =(—y )3 Y =—5|n(—2 y2) , Y =logx—logy
y+X Xy y x°-y
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Y Y Y Y

yr:y_x ,=(X +y )Y‘ yvzis'n(x +y
y+X Xy y x'-y'

) , Y =logx-logy.
If weuse (2) witht = 1 , the differential equation in (1) becomes
X
v =12 3)

The appearance of the quotient y on the right suggests that we introduce a new unknown function v wherev = ¥ .
X X

| .
Sygo a (1) Jamdl s dlolas oo p )5 @ t=; L, (v) S

y'=f0.2) (v)
X
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Then y=vx, Yy =vX+v,and thissubstitution transforms (3)
vx+v=Ff(Lv) or Xg—vzf(],v)—v
X

Thislast equation is afirst—order separable equation for v . We obtain an implicit formula for v and then replacev

by y to obtain an implicit formulafor y.
X

wly (¥) ool ol s Y =VXHV Y =VX g0 ol 5o
dv
X—=f(,VW)-v L vX+v=F(),Vv)
dx
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Linear equations of second order with constant coefficients

A differential equation of the form Y+ B (X)Y + P (X)y =R(X)

issaid to be alinear equation of second order. The functionsP, and P, which multiply the unknown function y and
itsderivativey’ are called the coefficients of the equation.
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For first-order linear equations, we proved an existence-uniqueness theorem and determined al solutions by an
explicit formula. Although there is a corresponding existence-uniqueness theorem for the genera second-order linear

equation, there is no explicit formula which gives dl solutions, except in some special cases. A study of the genera
linear equation of second order is undertaken in Volume I1. Here we treat only the case in which the coefficients B

and P, are constants. When the right — hand member R(x) isidentically zero, the equation is said to be homogeneous.
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The homogeneous linear equation with constant coefficients was the first differential equation of a general type to
be completely solved. A solution was first published by Euler in 1743. Apart from its historical interest, this
equation arisesin agreat variety of applied problems, so its study is of practical importance. Moreover, we can give
explicit formulas for al the solutions.
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Consider a homogeneous linear equation with constant coefficients which we write as follows:

y'+ay'+by=0
We seek solutions on the entire real axis(—o,+ ) . One solution is the constant functiony =0. This is called the
trivial solution. We are interested in finding nontrivial solutions, and we begin our study with some special cases
for which nontrivial solutions can be found by inspection. In all these cases, the coefficient of y' is zero, and the
equation has the formy” + by =0. We shall find that solving these special equations is tantamount to solving the
general case.
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We conclude this section with some miscellaneous remarks. Since al the solutions of the differential equation
y"+ay'+ by =0 are contained, the linear combination on the right is often caled genera solution of the differentia

equation. Any solution obtained by specializing the constantsc; andc, iscalled is called a particular solution.
Ceom b3 oS 5 il o] e cws @ YUY DY =0 5l Jeslhs dlsls slaclsr 4dS ez e s b 4 4SS iz SSL, i ol
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For example, takingc;=1,c,=0, and thenc;=0, c,=1, we obtan the two particular solutions
—aX —aXx
vy = e7u1(x) , Vo = e7u2(x) . These two solutions are of special importance because linear combinations of
them give us al solutions. Any pair of solutions with this property is caled abasis for the set of al solutions.
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A differential eguation always has more than one basis. For example, the equationy”=9y has the basis

v1=e3X ,v2=e‘3x But it has the basisw;=cosh3x, w,=snh3x. In fact, since 63X=W1+W2 and

e X =w; —w,, every linear combination of e and e Xis also a linear combination of w; andw,. Hence, the

pair wy, W, is another basis.
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It can be shown that any pair of solutionsv, andv, of adifferential equationy” +ay’+ by =0 will be abasisif the

ratio —2 is not constant. Although we shall not need this fact, we mention it here because it is important in the
Vl

theory of second —order linear equations with no constant coefficients.

1 V n ’
ol an a8 T L asls el V—szjﬂ cod gl O Y HaY DY =0 Lilis doles s Vy s Vy Slsz Sz o a5 ol las o3 e
\

B0 Coenl Gl yuf ulpo bpgo adje das O¥olas 4y ,lai 10 a5 0505 ;53 Sz cpl 5l el o |, o) Sy cedls muoless g5k Cllas

Both ordinary and partial differential equations are broadly classified as linear and nonlinear. A differential
equation is linear if the unknown function and its derivatives appear to the power 1 (products are not allowed) and
nonlinear otherwise. The characteristic property of linear equations is that their solutions form an affine subspace
of an appropriate function space, which resultsin much more devel oped theory of linear differential equations.
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Homogeneous linear differential equations are a further subclass for which the space of solutions is a linear
subspace i.e. the sum of any set of solutions or multiples of solutions is aso a solution. The coefficients of the
unknown function and its derivatives in a linear differential equation are allowed to be (known) functions of the
independent variable or variables; if these coefficients are constant then one speaks of a constant coefficient linear
differential equation.
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A linear equation obliges the unknown function y to have some restrictions. Indeed, the only operations which are
accepted for the variabley are:
(i) Differentiating y;
(ii) Multiplying y and its derivatives by afunction of the variable x
(iii) Adding what you obtained in (ii) and let it be equal to afunction of x.
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Linear differential equations frequently appear as approximations to nonlinear equations. These approximations are
only valid under restricted conditions. For example, the harmonic oscillator equation is an approximation to the
nonlinear pendulum equation that is valid for small amplitude oscillations.
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Solving Boundary Value Prablemsfor Ordinary Differential Equationsin MATLAB

Ordinary differential equations (ODEs) describe phenomena that change continuously. They arise in models
throughout mathematics, science, and engineering. By itself, a system of ODESs has many solutions. Commonly a
solution of interest is determined by specifying values of all its components at asingle pointx =a. Thisisaninitial
value problem (IVP). However, in many applications a solution is determined in a more complicated way. A
boundary value problem (BVP) specifies values or equations for solution components of at more than one x.
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Unlike IVPs, aboundary vaue problem may not have a solution, or may have afinite number, or may haveinfinitely many.
Because of this, programs for solving BV Ps require users to provide a primary guess for the solution desired. Often there
are parameters that have to be determined so that the BV P has a solution. Again there might be more than one possibility,
S0 programs require a guess for the parameters desired. Singularities in coefficients and problems posed on infinite
intervals are not unusual. Simple examples are used in 82 to illustrate some of these possibilities.
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Thistutorial shows how to formulate, solve, and plot the solution of a BVP with MATLAB program bvp4c. It aims
to make solving atypical BVP as easy as possible. BV Ps are much harder to solve than IVPs and any solver might
fail, even with good guesses for the solution and unknown parameters. Bvp4c is an effective solver, but the
underlying method and computing environment are not appropriate for high accuracies nor for problems with
extremely sharp changesin their solutions.
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Boundary Value Problems

If the function f is smooth on [a, b], the initial value problemy’=f(x,y),y(a) given, has a solution, and one.
Two-point boundary value problems are exemplified by the equation.
y'+y=0

with boundary conditions y(a) =A , y(b) =B. An important way to analyze such problems is to consider a family

of solutions of IVPs. Let y(x,s)be the solution of equation (1) with initial vaues y(@=A, y'(a)=s.

Eachy(x,s) extends tox =b and we ask, for what values of s doesy(b,s)=B? If there is a solution s to this

algebraic equation, the corresponding y(x,s) provides a solution of the differential equation that satisfies the two
boundary conditions. Using linearity we can sort out the possibilities easily.
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Let u(x) bethe solution defined by y(a)=A, y'(a)=0 and u(x) be the solution defined by y(a)=0, y'(a)=1.
Linearity implies that y(x,s) = u(x) +sv(x) , and the boundary condition B =y(b,s)=u(b)+ sv(b) amounts to a
linear algebraic equation for the unknown initial slope s. The familiar facts of existence and uniqueness of solutions

of linear algebraic equations then tell us that there is either exactly one solution to the BVP, or there are boundary
values B for which there is no solution and others for which there are infinitely many solutions.
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Nonlinearity introduces other complicationsillustrated by the problem
y"+|y|EO0withy(0)=0,y(b)=B. Proceeding as with the linear
examples it is found that for any b< 1, there are exactly two solutions 15

L)

for any B< 0. One solution has the formy(x,s) =ssinhx ; it starts off !
with a negative slope s and decreases monotonely to B. The other starts S N
off with a positive slope where it has the formy(x,s) =ssinx. This ‘n:
solution crosses the axis atx=m, where its form changes and it 1
decreases thereafter monotonely to B. Fllowing Figure shows an 15
example of thiswith b=4and B =-2. Much as eigenvalue praoblems, R T 7 T S T R T N

when solving nonlinear BVPs we have specify which solution is the Twoslutionsfor Y™+ |y |2 0.

one that interests us.
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Before looking at power series solutions to a differential equation we will first need to do a cursory review of

power series. Now we will finally be looking at nonconstant coefficient differential equations. While we won’t

cover al possihilities in this chapter we will be looking at two of the more common methods for dealing with this

kind of differential equations.
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The first method that we' Il be taking a look at, series solutions, will actudly find a series representation for the solution

instead of the solution itsalf. You first saw something like this when you looked a Taylor series. Aswe will see however,

thiswon’t work for every differentia equation. The second method that we'll look at will only work for a specid class of

differentid equations. Thisspecia casewill cover some of the casesin which series solutions can't be used.
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CHAPTER FOUR
(( Complex Functions))

‘ Analytic Functions
e

A function f of the complex variable z is analytic at a point z if its derivative f'(z) exists not only at zo but at

every point z in some neighborhood of z,. It is analytic in a domain of the z plane if it is analytic a every point in
that domain. The terms " regular” and " holomor phic" are sometimes introduced to denote analyticity in domains
of certain classes.

The function |z|2, for instance, is not analytic at any point, since its derivative exists only at the point z=0, not
throughout any neighborhood.
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An entirefunction isone that is analytic at every point of the z plane, that is, throughout the entire plane. We have
shown that the derivative of every polynomial in z exists at every point, hence every polynomial

p(2) = ag +34Z+8yz° +...+ 2, 2" (n=01,2,...)
isan entire function.
If afunction is analytic a some point in every neighborhood of a point z, except at 7o itself, then z, is called a
singular point, or asingularity of the function.

2 gl sl icewl Sg g Glahadi ;o 07 )0 gllezaiz o Glie a5 ool las il Ldow axmas bl ples jo a5 el ol o6 @b S
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p(2)=a +az+az +..+a,z" (N=o,,Y,...)
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For example, we have seen that if,
1
72

f(Z)=% then  f/(2)=- (Z%0)

Thusf isaanalytic at every point except the point z=0, where it is not continuous, so that f’(0) cannot exist. The

pointz=0 isasingular point. On the other hand, our definition assigns no singular points at all to the function |z|2 :
since the function is nowhere analytic.
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A necessary, but by no means sufficient, condition for a function to be analytic in a domain D is clearly that the
function be continuous throughout D. The Cauchy- Riemann conditions are aso necessary, but not sufficient.
Two sets of sufficient conditions for analyticity in D are given, if the hypotheses stated in those theorems are
satisfied at every point of D. But other useful sets of sufficient conditions arise in the following way from the
conditions of validity of the differentiation formulas.
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The function u= y3 - 3x2y
is readily seen, by direct substitution into Laplaces equation, to be a harmonic function. In order to find its
har monic conjugate v, we note that % = —6Xy
X
from which, by using one of the Cauchy- Riemann equations, we may conclude that
N_ —6xy
oy
A Y . =
u=y —-vxy ST VIE R
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Integrating this equation with respect to y with x held fixed, we find that
u= —3xy2 + ¢(X)

where ¢(x) isat present an arbitrary function of x. But since 2_u = _%u , it follows that
X

—3y2 +¢'(X)= —3y2 +3x2 :

Therefore ¢'(x) = 3% and o(x) = x3+c, where ¢ is an arbitrary constant. Hence the harmonic conjugate of the

function u=y3—3x2y is u=—3xy2+x3+c

2L (X)) 0T 55 a8 U= —PXYT H QX)) S e oo o 055 4zl 455 Coll X a5 Il 43 Y &y S lolns ol 51 (6,5 1,550 L
Y ’ Y Y au au _
Yy +¢'(X)=-ry +¥X S sy amts = == o bl Ly ol X5l alys
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Lcad iy U= YT —YXTY il sleos zgoge ool olsids il Sy cas @(X) =X +C 5 @' (X) =YX sl il
u=-rxy' +x" +c
The corresponding function f = u +iv is
f(z)=y3—3x2y+i(x3—3xy2)+ic (D)
Itis easily verified that f(2)=i(z°+0)
Thisform is suggested by noting that when y=0, equation (4-1) becomes.
f(x)=i(x3+0)
Later on we shall show that, corresponding to each harmonic function u , a harmonic conjugate function v exists.
el i T = UHIV bl 2l
f2)=y" —rx"y+i(x" —rxy") +ic )
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CHAPTER SI X
(( Algebra))

‘ Normal Subgroupsand Quotient Groups
B

Let G bethe groupS; and let H be the subgroup{e, ¢} . Since the index of H in G is 3, there are three right cosets of
H in G and there left cosets of H in G We list them:

Right Cosets Left Cosets
H={e ¢} H={e ¢}
Hy ={v.¢v} wH ={y,y0 =y?}

vH={y" W o=0y} vH={vZ v =0y}

A quick inspection yields the interesting fact that the right coset Hy is not a left coset. Thus, at least for this
subgroup, the notions of left and right coset need not coincide.
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H={e ¢} H={e ¢}
wH={y,vo =0y} Hy ={v.¢v}

vH={y" v o=0y}  Hy" ={y "oy}
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ING =S5 let us consider the subgroup N :{e,\y,WZ}.Since the index of N in G is 2 there are two left cosets and
two right cosets of N in G We list these:

Right Cosets Left Cosets

N ={ev,y3} N ={ey,y?}
No={o.wo.w%0}  ON={p.dy.oy?}

={6,w%0, w0}

A quick ingpection here reveds that every left coset of N in G isaright coset in G and conversdly. Thus we see tha for some
subgroups, the nation of Ieft coset coincides with that of right coset, whereas for some subgroups these concepts differ.
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N={ew,v'} N={ev,v'}

ON={0,wd,0u'}  No={d,wd,y"¢}
={0. v 0, w}
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Definition and Examples of Rings

As we indicated in previous there are certain agebraic systems which serve as the building blocks for the structures

comprising the subject which is today cdled modern algebra. At this stage of the devel opment we have learned something
about one of these, namely groups. It isour purpose now to introduce and to study a second such namely rings.
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The abstract concept of a group has its origins in the set of mappings, or permutations, of a set onto itself. In

contrast, rings stem from another and more familiar source, the set of integers. We shall see that they are patterned
after, and are generalizations of, the algebraic aspects of the ordinary integers.
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In the next paragraph it will become clear that aring is quite different from a group in that it is a two —operational

system; operations are usualy called addition and multiplication. Yet, despite the difference, the analysis of rings

will follow the pattern already laid out for groups.
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We shall require the appropriate anal ogs of homomorphism, normal subgroups, factor groups, etc. With the experience
gained in our study of groups we shall be able to make the requisite definitions, intertwine them with meaningful
theorems, and end up proving results which are both interesting and important about mathematical_objects with which
we have had long acquaintance. To cite merely one instance, later on in the book, using the tools developed here, we
shdl provethat it isimpossibleto trisect an angle of 60° using only a straight —edge and compass.
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A simple computation now showsthat X.Y=1. Thus the nonzero elements of Q form a non-abelian group under
multiplication. A ring in which the nonzero elements form a group is called a division ring or skew-field. Of
course, a commutative division ring is a field. Q affords us a division ring which is not a field. Many other
examples of non commutative division rings exist, but we would be going to for afield to present one here. The
investigation of the nature of division rings, and the attempts to classify them form an important part of algebra.
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Vocabulary
=

Artificial Variable S oy

TR Example: When any of the constraints is an equation, there are two possible approaches. In one we replace the

equation by a pair of inequalities. An aternative way, sometimes significantly easier to manage by hand is to
introduce a corresponding artificial variable.
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Basic Solution Slal lg>

T Example: Each solution to any system of equations is called a Basic Solution (BS). Those Basic Solutions

which are feasible are called Basic Feasible Solutions (BFS). The vertices of solution region are the BFS.
b (BFS) slab i glolex 1) ol Sos aS slal slacls ol o)l 6l (BS) slub ly> o ¥olas olKiws o sl e
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Big-M Method Sz M G,

W Example: The Big M method is an alternative form of two-stage simplex which requires only one objective
function.
20 5ls Bam b S a4y kb 4 el (glal pog0 wShiars | 23Sl (g, S5 M,

Constraints Legdgume b wud

W Example: A linear equation represents a straight line. Limited time, labor etc. may be expressed as linear
inequality or equations and are called constraints.
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Feasible Solution S Olg>

PN Example: A set of values of the variables X1, X2, Xs,....,Xn Which satisfy all the constraints and also the non-
negativity conditionsis called the feasible solution of the LPP.
Al oo LPP S Slez S WS e oo o9 kel Ll 1h g bacusgase plad ;o a5 Xy, Xy, Xy ey Xy 6o piin 1 pp0lis dcgome SO

I nfeasible Solution S Sle

T Example: The fact that a particular solution may be infeasible does not imply that the problem itself is
infeasible. However, infeasible problems do exist.
Doy ge wb Sodd s diz e asl Sois allas 595 45 35 ced g wBl St Cenl (e (ol Sy ST a5 Caadly oy

Objective Function Sub 2l

TR Example: The Objective Function is a linear function of variables which is to be optimized i.e., maximized or
minimized. e.g., profit function, cost function etc.
g A ol ge 1l M 39 merine b rewnSle _iny 095 dige Wb a5 Cenls priie 5l as ol Bus &l

Optimal Solution o Sle

T Example: The feasible solution, which optimizes (i.e., maximizes or minimizes as the case may be) the
objective function is called the optimal solution.
el o gy Olga 1 (WS o prosin b rosaSTle callice 4y diiny im) 05 oo aige |, Bus ol a5 ud Olg>
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Optimization & ilwaiae
TR Example: A decision which is considered the best one, taking into consideration al the circumstances is called an
optima decision.
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Penalty Aog y2
TR Example: In order to reflect the undesirability of a nonzero artificial vector, the objective function is modified

such that alarge penalty is paid for any such solution.
Se Sy szl oz ya (6l 55 day ;2 SO AT 89d o 2ol (5,5b Bus WU aol egian Hlon S Hog wglhael 4 STy (6l

Simplex Method oSl (95
& Example: The Simplex Method is another agorithm for solving LP problems.

el LP Pl J> (152 6,500 o, (mShrow b,
LPP Solution Of A LPP S Sl

T Example: A set of values of the variables X1, Xa,....X» Which satisfy al the constraints is called the solution of

the LPP.
Sugs LPP Clg> 5, QS oo B iy sgass plei jo a5 Xy, Xyy Xy y ey Xy (sl yuiiio 51 pi0lin 5l acgoome S

Two — Phase Method Slal> w0 95 (9

TR Example: The two-phase method is one way to get rid of the artificial variables.
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1. leaf
2. thief

3. knife

1. qulf

4. safe

7. strife

10. belief
13. reef

16. cliff

19. mischief

1. city
2. liability
3. country

1. potato
2. hero

3. tomato

1. dynamo
4. two

7. ditto

10. piano
13. soprano

1. crisis

2. basis

3. dormouse
4, foot

5. footman
6. goose

7. louse

8. mouse
9. man

10. tooth
11. woman
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